A Data-Warehouse/OLAP Framework for Scalable Telecommunication Tandem Traffic Analysis
نویسندگان
چکیده
In a telecommunication network, hundreds of millions of call detail records (CDRs) are generated daily. Applications such as tandem traffic analysis require the collection and mining of CDRs on a continuous basis. The data volumes and data flow rates pose serious scalability and performance challenges. This has motivated us to develop a scalable datawarehouse/OLAP framework, and based on this framework, tackle the issue of scaling the whole operation chain, including data cleansing, loading, maintenance, access and analysis. We introduce the notion of dynamic data warehousing for managing information at different aggregation levels with different life spans. We use OLAP servers, together with the associated multidimensional databases, as a computation platform for data caching, reduction and aggregation, in addition to data analysis. The framework supports parallel computation for scaling up data mining, and supports incremental OLAP for providing continuous data mining. A tandem traffic analysis engine is implemented on the proposed framework. In addition to the parallel and incremental computation architecture, we provide a set of application-specific optimization mechanisms for scaling performance. These mechanisms fit well into the above framework. Our experience demonstrates the practical value of the above framework in supporting an important class of telecommunication business intelligence applications.
منابع مشابه
Visual Mobility Analysis using T-Warehouse
Technological advances in sensing technologies and wireless telecommunication devices enable novel research fields related to the management of trajectory data. As it usually happens in the data management world, the challenge after storing the data is the implementation of appropriate analytics for extracting useful knowledge. However, traditional data warehousing systems and techniques were n...
متن کاملAn OLAP-based Scalable Web Access Analysis Engine
Collecting and mining web log records (WLRs) from e-commerce web sites has become increasingly important for targeted marketing, promotions, and traffic analysis. In this paper, we describe a scalable data warehousing and OLAP-based engine for analyzing WLRs. We have to address several scalability and performance challenges in developing such a framework. Because an active web site may generate...
متن کاملPhysical Data Warehouse Design on NoSQL Databases - OLAP Query Processing over HBase
Nowadays, data warehousing and online analytical processing (OLAP) are core technologies in business intelligence and therefore have drawn much interest by researchers in the last decade. However, these technologies have been mainly developed for relational database systems in centralized environments. In other words, these technologies have not been designed to be applied in scalable systems s...
متن کاملA Data Warehouse/OLAP Framework for Web Usage Mining and Business Intelligence Reporting
Web usage mining is the application of data mining techniques to discover usage patterns and behaviors from web data (clickstream, purchase information, customer information etc) in order to understand and serve e-commerce customers better and improve the online business. In this paper we present a general Data Warehouse/OLAP framework for web usage mining and business intelligence reporting. W...
متن کاملOLAP-based Scalable Profiling of Customer Behavior
Profiling customers’ behavior has become increasingly important for many applications such as fraud detection, targeted marketing and promotion. Customer behavior profiles are created from very large collections of transaction data. This has motivated us to develop a data-warehouse and OLAP based, scalable and flexible profiling engine. We define profiles by probability distributions, and compu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2000